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Refraction of electromagnetic energy for wave packets incident on a negative-index
medium is always negative
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We analyze refraction of electromagnetic wave packets on passing from an isotropic positive to an isotropic
negative-refractive-index medium. We definitively show that in all cases the energy is always refracted nega-
tively. For localized wave packets, the group refraction is also always negative.
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I. INTRODUCTION

The existence of a medium with a negative (n,0) index
of refraction, raised several years ago@1#, has recently been
demonstrated experimentally@2#. One of the most striking
properties of negative index materials~NIMs! is the negative
refraction for plane waves across the interface betw
positive-index material~PIM! and a NIM. Negative refrac-
tion means that when radiation passes through an inter
between a PIM and a NIM, the refracted beam is on the sa
side of the normal as the incident beam~see Fig. 1!, in con-
trast to the usual positive refraction in which they are
opposite sides of the normal.

In studies of negative refraction, it is essential to repres
incident waves as localized wave packets, rather than p
waves, since all physical sources of electromagnetic wa
produce radiation fields of finite spatial and temporal ext
because the sources are always of finite spatial extent
because they only radiate for a finite time. Hence treatme
of this problem which study waves that extend over infin
distance in all or some directions cannot be trusted to r
ably predict the direction in which a wave will be refracte
and in fact treatments based on such extended waves@3#
have led to a direction of refraction opposite to that wh
one finds for spatially localized wave packets, resulting i
great deal of controversy and confusion. Although seve
treatments using waves of infinite extent in some direct
~e.g., a plane-wave front@4#! have obtained negative refrac
tion, since such a model is unphysical, for the reasons g
above, we cannot have confidence in conclusions obta
from it.

In this paper, we treat refraction of a localized wa
packet at a PIM-NIM interface both analytically and b
simulations, demonstrating that it refracts negatively.
also present both analytic and numerical studies of w
packets constructed from a small number of plane wav
Our purpose in doing this is to give a plausible explanat
for why the two-plane-wave model studied by Valanjuet al.
@3# gives a misleading answer. We find that in all cas
including the model of Valanjuet al., the energy and mo
mentum of the wave refract negatively. Since electrom
netic waves are detected only when they either give up
ergy to or exert a force on a detector, the relevant directio
propagation to consider is that of the region of space
which the energy and momentum of the wave are nonze
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Without sources, Maxwell’s equations are“•D50, “

3H5] tD, “3E1] tB50, “•B50. For plane waves of
wave vectork and frequencyv, only three equations are
independent. Using the usual relationships betweenD(t) and
E(t) and betweenB(t) and H(t) @5# one obtains for such
plane wavesk3H52v«(v)E, k3E5vm(v)H. Combin-
ing these equations gives us a functional relationship
tween v and k. Wave propagation is only permitted fo
(«,m,n.0) or («,m,n,0) @1#. In the latter case, (E,H,k)
will form a left-handed triplet while in the former case, fo
an ordinary material, (E,H,k) will form a right-handed
triplet.

In Sec. II, we treat the negative refraction of wave pack
and beams. The analysis of refraction of finite number
plane waves will be done in Sec. III.

II. NEGATIVE REFRACTION OF WAVE PACKETS

A wave packet localized in a compact region of space
occurs in all experimental situations, can be constructed fr
a continuous distribution of wave vectors. Consider suc
wave packet incident from outside the NIM,E
5 ŷE0*d2k f(k2k0)e[ i (k•r2v(k)t)] with v(k)5ck. Here we
only considerS-polarized waves. TheP-polarized waves can
be treated similarly, however. Throughout the paper,
choose thez axis from PIM to NIM normal to the interface

FIG. 1. Time-lapse snapshots of the electric-field intensity o
propagating Gaussian wave packet refracting negatively at a P
NIM interface. Arrows indicate the directions of motion. The cen
wave number isk05A5 with incident anglep/6. The spatial extent
of the incident wave packet isDx5Dz510. The time step is 50
with speed of lightc51. The dispersion, Eq.~8!, was used for NIM
andn5m51 for PIM.
©2004 The American Physical Society04-1
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and thex axis along the interface. Iff (k2k0) drops off
rapidly ask moves away fromk0 , v(k) can be expanded in
a Taylor series to first order ink2k0 to a good approxima-
tion. This gives

E5 ŷE0e[ i (k0•r2v(k0)t)]g~r2vgt !, ~1!

with g(R)5*d2k f(k2k0)ei (k2k0)•R and vg
5“kv(k)uk5k0

.

Inside the NIM,k andk0 in the argument of the exponen
get replaced bykr andkr0 which are related tok andk0 by
Snell’s law,

krx5kx , krz52A~nrv/c!22kx
2. ~2!

Herenr is the refractive index for the NIM and is a functio
of v. Then the wave packet once it enters the NIM is giv
by

Er5 ŷE0e[ i (kr0•r2v(kr0)t)]gr~r2vgrt !, ~3!

where gr(R)5*d2k f(k2k0)tke
iR•(kr2kr0) and tk is the

transmission amplitude for an incident plane wave of wa
vectork. It is the standard expression for this quantity for t
two polarizations of the incident plane wave@6#. Here kr0
denoteskr evaluated atk5k0 andvgr5“kr

v(kr) evaluated

at kr5kr0. Let us expandkr2kr0 in the exponential function
in the expression forgr(R) in a Taylor series ink2k0 to first
order, kr2kr0'(k2k0)•“k(kr2kr0)uk5k0

. Substituting

this in the expression forgr(r ), we obtain gr(R)
5*d2k f(k2k0)tke

iR•[(k2k0)•“k(kr2kr0)] . If the width of the
distribution of wave vectorsf (k2k0) is small compared to
the range ofk over whichtk varies significantly, we can to a
good approximation simply evaluate this quantity atk5k0
and put it outside the integral overk. Then, the transmission
coefficient of the wave packet is simply given byutk0

u2.

If we carry out the expansion ofv(kr) to second order in
k2k0, we are able to show that the wave packet spreads
but if the length and width of the packet are much larger th
the wavelength corresponding to the wave vectork0 at the
peak in f (k2k0), we find that the amount that the pack
spreads out in a given time interval is much smaller than
distance traveled by the packet in that time. Then clea
under such reasonable conditions, the wave packet will
main sufficiently well defined to be able to observe the
fraction of the packet. The expansion of the frequency i
Taylor series is valid for a sufficiently narrow distributio
f (k2k0).

In order to get an explicit expression forg(R), let the
wave packet have a Gaussian formf (k)5(DxDz/p)exp
@2kx

2(Dx)22kz
2(Dz)2#. Expandingkr in a Taylor series around

kr0, we get

gr~R!5exp@2Cx
2/4~Dx!22Cz

2/4~Dz!2# ~4!

with Cx5Rx1(cnr /y r21)(kx0 /krz0)Rz , Cz5(cnr /
y r)(kz0 /krz0)Rz , and y r5c(dnrv/dv)21. From the above
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expressions, one can see that the Gaussian wave pa
moves withvgr . Due to the dispersion, the wave packet
deformed in the NIM.

A NIM is dispersive and causality demands th
d(«v)/dv.1 andd(mv)/dv.1 for nearly transparent me
dia @5,7#. For an isotropic NIM, sincenr is a function ofv
only, vgr5c(dnrv/dv)21(ckr /nrv)52y r k̂r with k̂r the
unit vector in the direction ofkr . Sincey r is always positive
for transparent media as required by causality, the group
locity will be refracted opposite to the direction of wav
vectorkr .

The magnetic field obtained from the electrical fie
throughH5(1/vm)k3E is

Hr52
E08

c E d2k f~k2k0!
nr~k!

m r~k!
~ k̂r3 ŷ!eikr•r2 iv(k)t ~5!

with E085tk0
E0, from which we find the Poynting vector to

be

Sr5Re Er3Re Hr

52
uE08u

2

c E d2kE d2k8 f ~k2k0! f ~k82k0!
nr~k!

m r~k!

3cos@kr•rÀv~k!t#cos@kr8•r2v~k8!t# k̂r , ~6!

where we have used the fact thatkr• ŷ50. While there is no
question that the Poynting vector at a point in a medi
gives the local direction of energy flow, it does not give
the direction of energy flow by a wave packet or a group
plane waves as a whole since the direction of the Poyn
vector varies with space. The integral of the Poynting vec
over all space,Pr5*^Sr&dr , however, gives the total mo
mentum carried by a wave packet. This quantity divided
the volume over which the wave packet is nonzero is
average of the Poynting vector over the whole wave pac
Either way, this integral clearly represents the direction
motion of the wave packet in the medium. From the abo
expression forSr , one has

Pr52~ uE08u
2/2c!E d2k f~k2k0!2

nr~k!

m r~k!
k̂r . ~7!

Let us consider a coordinate system whosez axis is alongk0.
The functionf (k2k0)2 will then be a function ofkx andkz
symmetrically peaked aroundkx50 andkz5k0. Then writ-
ing Eq. ~7! as

Pr52~ uE08u
2/2c!E d2k f~k2k0!2

nr~k!

m r~k!

kxx̂1krzẑ

ukr u

we can see that since the wave numberk is an even function
of kx , the integrand is an odd function ofkx and hence thex
component vanishes. Therefore,Pr , which as argued above
represents the propagation direction of the wave packe
opposite in direction tokr05krz0ẑ, i.e., in the direction of
the group velocity. Hence, the energy refracts negatively
4-2
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The negative refraction of the wave packet is illustra
by numerical simulation in Fig. 1. We use the following di
persion relation

nr~v!52~1/v!A~v22vb
2!~v22vp

2!/~v22v0
2! ~8!

for the NIM with v0,v,vb . The permeability ism r

5(v22vb
2)/(v22v0

2). The numbers we used in the calc
lation are v051, vb53, vp5A10, and c51. Figure 1
shows stroboscopic snapshots of the electric-field intensit
a propagating wave packet incident on a PIM-NIM interfa
@8#. The negative refraction of the wave packet is clea
evident.

For completeness, let us consider a beam given by

E5E0E dk'ei (k01k')•r f ~k'!. ~9!

Herek' is perpendicular tok0 and f (k') assumes a Gauss
ian form. Note that this construction is different from that
Kong et al. @9# and Smithet al. @10# in that the width of the
incident packet is made finite in directions perpendicular
the direction of propagation. The electric fieldE of the beam
is shown in Fig. 2@8#. Because the NIM is highly dispersive
the incident beam once it enters the NIM will no longer be
beam. It will be a localized wave packet instead, althoug
is difficult to see this in the figure. Just as for the wa
packet, the beam intensity also refracts negatively.

III. NEGATIVE REFRACTION OF PACKETS
CONSTRUCTED FROM A FINITE NUMBER

OF PLANE WAVES

Although we have already considered the refraction o
wave packet when it enters a NIM from a PIM, we ne
consider the refraction of wave packets made up of a fi
number of plane waves. Our reason for doing this is to p
vide a plausible explanation for why two plane waves e
ample of Valanjuet al. appears to give positive refraction

FIG. 2. Intensity of electric field ReE of a beam withk05A5

and the Gaussian weightf (k')5e2(10k')2
. The incident angle of

the beam isu5p/12.
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For the cases of two, and three plane waves analytical
pressions are obtained for the Poynting vector, moment
and velocity of interference pattern. First consider the cas
two plane waves in thexz plane incident from PIM to NIM
where the interface is atz50. Let wave vectors and frequen
cies be (k1 ,v1) and (k2 ,v2). We set the polarization in the
y direction as before. SupposeDv5v22v1.0. The inci-
dent wave in PIM is

E52E0eiK•r2 iVt cos~Dk•r /22Dvt/2!ŷ ~10!

with K5(k11k2)/2, V5(v11v2)/2, Dk5k22k1, andE0
the wave amplitude of each plane wave. The electric field
the refracted waves is

Er52E08e
iK r•r2 iVt cos~Dkr•r /22Dvt/2!ŷ ~11!

with K r5(kr11kr2)/2 and Dkr5kr22kr1, where E08
5tKE0 , kr1 andkr2 are related tok1 andk2, respectively, by
Eq. ~2!.

The relatively long-wavelength cosine function in E
~11! moves in the NIM with a velocity@11#

vr5~Dv/uDkr u2!~Dkxx̂1Dkrzẑ!, ~12!

assuming thatuDku!uK u. From the above expression, it
evident thatv rx.0 if Dkx.0. Sincev1,v2, we have 0
,n(v1)<n(v2) and nr(v1),nr(v2),0 by the require-
ment of causality which requiresd(nrv)/dv.0. One has
kr1z

2 2kr2z
2 5kr1

2 2kr2
2 1k2x

2 2k1x
2 .0. Sincekrz52ukrzu, v rz

.0, the group refraction appears to be positive@3#. This is
due to the simple fact thatv rx.0 if vx.0. Proper dispersion
must givev rz.0 since the energy should propagate aw
from the interface. But we shall see that the above pictur
not true for the energy flow.

Let us determine the time-average Poynting vector^Sr&.
Using the magnetic field corresponding toEr of Eq. ~11!,
Hr5E08( j 51

2 (kr jzx̂2kjxẑ)eikr j •r2 iv j t/v j , ^Sr& is defined to
be the time average ofSr over the period corresponding t
the average frequency of the two plane waves. It is given

^Sr&52
1

2
~11cosDf r !uE08u

2(
j 51

2 S x̂
kjx

v j
1 ẑ

kr jz

v j
D , ~13!

whereDf r5Dkr•r2Dvt. Sincekrz,0, one hasSx,0 and
Sz.0. Thus, contrary to the refraction of the cosine functi
in Eq. ~11!, the Poynting vector is directed in the negati
refraction direction, i.e., refracts negatively.

We shall now demonstrate that by including more pla
waves in our group, one can get negative refraction of
group in addition to the energy. Actually, just one addition
plane wave can achieve that. Thus, let us include three p
waves, whose wave vectors form a triangle, rather than be
parallel. Let the magnitudes of the wave vectors bek, k
1dk1 , k1dk2, and their angles with the normal to the in
terface, beu, u1du1 , u1du2. Inside the PIM or the NIM,
we have
4-3
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E5 ŷei (kxx1kzz2vt)$11exp@ i ~u2ct!dk11 ivkdu1#

1exp@ i ~u2ct!dk21 ivkdu2#%, ~14!

with u5x sinu1z cosu andv5x cosu2z sinu for the PIM
and u5x sinu1az, v5x cosu1bz, and kz replaced bykrz
for the NIM. Then the lines whose equations areu5constant
andv5constant are perpendicular for the PIM. Here use
been made of the following expansion:

krz~k1dk,u1du!'krz1adk1bkdu ~15!

with

a5k~sin2u1cunr u/y r !/ukrzu,

b5k sin 2u/2ukrzu.

Herey r5c(dnrv/dv)21. The dependence ofkrz on k andu
is obtained from Eq.~2!. The condition for maximum inten
sity for the quantity in brackets, the long-wavelength en
lope of the packet, is determined by the equations

~u2ct!dk11vkdu152m1p,

~u2ct!dk21vkdu252m2p,

whose solution in the PIM is

x5~c1 sinu1c2 cosu!1sinu ct,

z5~c1 cosu2c2 sinu!1cosu ct

with

c152p~m2du12m1du2!/~du1dk22du2dk1!,

c252p~m1dk22m2dk1!/@k~du1dk22du2dk1!#,

which are clearly only defined fordk1 /dk2Þdu1 /du2.
Inside the NIM, the solution for the location of the inte

sity maxima is

x5~c2a2c1b2bct!/~a cosu2b sinu!,

z5~c1 cosu2c2 sinu1cosu ct!/~a cosu2b sinu!.

From the expressions fora and b under Eq.~15!, one has
a,b.0 and a cosu2b sinu.0. Then from the above ex
pressions ofx(t) and z(t), one hasdx/dt,0 and dz/dt
.0. Thus therefraction will be negative. Let the angles of
the lineu5constant andv5constant in the NIM with thez
axis be a and b, respectively. Then one has tana5
2a/sinu, and tanb52b/cosu5kx /krz . So one always has
p/2,a,b,p inside the NIM. From the above expre
sions, one can see that the maxima move in theb direction,
that is, antiparallel tokr . The velocity of interference patter
in the NIM defined as the velocity of maximum is given b

vr52y r k̂r . ~16!
02660
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This velocity is independent of how the incident wave pac
is constructed. The refraction of a group constructed fr
four plane waves is shown in Fig. 3@8#. The arguments pre
sented above demonstrate that for anygroup consisting of
three or more plane waves whose wave vectors are not
linear, the group refraction is negative.

While the simulations in Fig. 3 clearly show that the i
tensity maxima refract negatively, the normal to the plane
which these intensity maxima lie are directed in a posit
refraction direction. Thus, if one was to imagine smoothi
out all intensity variation in the planes, the planes wou
appear to refract in a positive direction. We believe that t
is a remnant of the positive refraction of the planes of inte
sity maxima@the cosine function in Eq.~11!# found for the
interference pattern for the two plane waves example of R
@3#. When there are only two plane waves, this is the o
group motion that we see in the NIM since for a group co
sisting of two plane waves, there are no intensity variatio
in these planes.

Let us also look at the energy flow which is represen
by the Poynting vector. For three wave vectors with wav
vector magnitudesk2dk, k , k2dk, and the angles with the
normal u2du, u, u1du, respectively, the magnetic fiel
can also be calculated from Eq.~14! using Maxwell’s equa-
tions and the resulting Poynting vector up to the first orde
both dk anddu is given by

^Sr&52 1
2 ~114 cos2Ã14 cosÃ cosdf r !kr /v

2kdu sinÃ sindf r~cosu x̂1bẑ!/v

12dk cos2Ã~a2krz /k!ẑ/v, ~17!

where

FIG. 3. Electric field ReE of negative refraction of four plane
waves with wave-vector magnitudesk2dk, k, k1dk, k, and inci-
dent anglesu, u2du, u, u1du, respectively. Arrows indicate the
directions of motion. The center wave number isk5A5 with inci-
dent angleu5p/6, dk50.2, anddu5p/45. Up to the first-order
approximation, the electric field, Poynting vector, and the mom
tum of this group of plane waves areEr52eifr(cosÃ1cosdfr),
^Sr&522(cosÃ1cosdfr)

2kr /v, Pr
cell522Akr /v, respectively.
4-4
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Ã5~bz1cosu x!kdu,

df r5~az1sinu x!dk2dvt.

The time average is performed over the period correspon
to the average frequency of the three plane waves. Here,^Sr&
is not localized; rather it forms a lattice. A unit cell is define
as the region in whichÃ changes byp anddf r changes by
2p, as is obvious from the expression forEr or ^Sr&. The
area for each unit cell in NIM is

A52p2/~a cosu2b sinu!kdkdu.

Instead of integrating over all space which will diverge, o
can calculate the electromagnetic momentum for each
Ignoring higher-order terms indk anddu, we get

Pr
cell523A~112dk/3k!K r /2v ~18!

with K r5kr22(x̂ sinu1ẑa)dk/3, the average of the thre
wave vectors which make up the group.

A packet constructed from a finite number of plane wav
will always give a collection of propagating wave puls
tt

s

a
hi

02660
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with the area of the unit cell inversely proportional todk and
du. For the above localized waves made of finite number
plane waves, the group velocityvgr is parallel to Pr and
antiparallel to the average wave vectorK r .

IV. CONCLUSION

In this paper, we have shown that for any localized wa
packet, the refraction at an interface between a PIM an
NIM is always negative. As pointed out earlier, it is essen
for a correct treatment of this problem to use wave pack
which are localized in all directions since the electroma
netic field from any physical source is a localized wa
packet.
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